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Anton 11.4

Convergence Tests

Types of series we’ve discussed so far:

1. Geometric

We need some more tests to determine whether a 
given series converges.

2. Telescoping

3. Harmonic

Divergence Test (nth term test)

Let ak be the general term of ak.

If lim 0kk
a


 then ak diverges.

If lim 0kk
a


 then ak may converge or diverge.

Thrm:  If ak converges then lim(ak) = 0

Is the converse of this theorem true?

Some examples:
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Properties of Series:

1. If uk and vk are convergent series, then 
(uk  vk) is convergent.  Moreover,

 k k k ku v u v    
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Ex: 

Properties of Series (cont.):

2. cuk = cuk
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Ex: 

Properties of Series (cont.):

3.  The convergence or divergence of a series is 
not affected by removing a finite number of 
terms*.
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Ex: 

*The sum is affected (if the series converges.)

Integral Test

Let ak have positive terms.  Let f(x)=ax.  If f(x) 
is decreasing on [b,) then:
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both converge or both diverge.
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Examples:

1

1
k k




 2

1

1
k k






For what values of p will the following series 
converge?
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P-series Test
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If p > 0, then a p-series has the following form:

1 1 11
2 3 4p p p    

A p-series will converge if:

A p-series will diverge if:
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Examples:
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Tests for Convergence/Divergence (so far):

1. Geometric Series Test

2. P-series Test (included harmonic series)

3. Divergence Test

4. Integral Test

5. Special Cases – telescoping series

Homework:
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